Emotional State Prediction from Online Handwriting and Signiture Biometrics / (Kayıt no. 281785)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03799nam a22002897a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA_MİRAKIL
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20210330154150.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 210326d2021 cy ||||| m||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no D 231
Cutter no B29 2021
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Bay, Yasemin
245 10 - ESER ADI BİLDİRİMİ
Başlık Emotional State Prediction from Online Handwriting and Signiture Biometrics /
Sorumluluk Bildirimi Yasemin BAY; Supervisor: Assoc. Prof. Dr. Erbuğ ÇELEBİ
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2021
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 115 sheets;
Boyutları 30 cm.
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (Ph.D) - Cyprus International University. Institute of Graduate Studies and Research Management Information Systems Department
504 ## - BİBLİYOGRAFİ NOTU
Bibliyografi Notu Includes bibliography (sheets 95-111)
520 ## - ÖZET NOTU
Özet notu ABSTRACT<br/>It has long been known that handwriting reveals many information for an individual's<br/>identification. For the last century, investigators first tried to predict the owner of the<br/>handwriting then recognized that it reveals more information such as the characteristics<br/>of the owner therefore shifted most of their attention to personal characteristics<br/>estimation, such as emotional state, However, to be able to evaluate and investigate the<br/>emotional state of an individual there is a need of a database with correctly labelled data<br/>with the relevant ground truth information. Yet, for researchers to be able to evaluate<br/>one's emotional state fairly is to work on a database providing the basic requirements<br/>which are, including contributors' demographic labels (age, gender, ethnicity etc.) or<br/>emotional status in addition to their identification labels. Unfortunately, there are almost<br/>no database, neither public nor commercial, providing this useful information.<br/>This dissertation will first propose a novel and rigorous handwriting and signature<br/>biometric database both in offline and online form and then predict one’s emotional state.<br/>To achieve this goal wide range of ground truths (i.e. identity labels, demographic labels<br/>as well as emotional state labels) will be used which are not contemplated by any other<br/>publicly or commercially available biometric handwriting and signature databases in the<br/>literature. Therefore, making this novel database available will shed a light to the<br/>biometric research community once again and researchers can actively work on it to<br/>contribute to science.<br/>The proposed database comprised total of 134 volunteers with handwriting and signature<br/>biometric data acquired using a digitizing tablet and a stylus pen. The process consisted<br/>of four different steps, each with aiming to extract different emotional states Task 1 -<br/>natural, Task 2 - happy, Task 3 - sad and Task 4 - stress. The database presented also<br/>includes individuals’ demographic information such as age, gender, handedness,<br/>education level and nationality. Database in total consists of 804 handwriting and 8040<br/>signature biometric samples.<br/>To be able to achieve the goal of this dissertation there have been 3 different experiments<br/>carried out to predict emotional state from handwriting and signature biometrics and the<br/>iii<br/>results obtained were encouraging with slightly high recognition rates and proves that<br/>both handwriting and signature biometrics contain valuable information regarding one’s<br/>emotional state. Out of 42 features 11 of them were selected after the feature selection<br/>method for classification purpose.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Biometric identification
Alt başlık biçimi Dissertation, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Emotions
Alt başlık biçimi Dissertation, Academic
Genel Alt Konu Prediction theory
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Çelebi, Erbuğ
İlişkili Terim supervisor
9 (RLIN) 1665
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Yer Numarası Demirbaş Numarası Son Görülme Tarihi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Tez Koleksiyonu 26.03.2021 Bağış D 231 B29 2021 T2157 26.03.2021 26.03.2021 Thesis Management Information Systems Department
    Dewey Onlu Sınıflama Sistemi     CIU LIBRARY CIU LIBRARY Görsel İşitsel 26.03.2021 Bağış D 231 B29 2021 CDT2157 26.03.2021 26.03.2021 Suppl. CD Management Information Systems Department
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular