A DEEPGAIT FEATURE EXTRACTION VIA MAXIMUM ACTIVATED CHANNEL LOCALIZATION AND ANALYTICAL STUDY ON MULTI-VIEW LARGE POPULATION GAIT DATASETS / (Kayıt no. 283413)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03050nam a22003137a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA_MİRAKIL
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20211203112827.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 211203d2021 cy ||||| m||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no D 267
Cutter no M94 2021
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Muhammed, Salisu
245 12 - ESER ADI BİLDİRİMİ
Başlık A DEEPGAIT FEATURE EXTRACTION VIA MAXIMUM ACTIVATED CHANNEL LOCALIZATION AND ANALYTICAL STUDY ON MULTI-VIEW LARGE POPULATION GAIT DATASETS /
Sorumluluk Bildirimi SALISU MUHAMMED; SUPERVISOR: ASSOC. PROF. DR. ERBUĞ ÇELEBI
246 23 - DEĞİŞİK BAŞLIK FORMU
Başlık uygun / kısa başlık A STUDY OF PUBLIC SECTORS IN ERBIL
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2021
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 103 sheets;
Boyutları 31 cm.
Birlikteki Materyal Includes CD
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (PhD) - Cyprus International University. Institute of Graduate Studies and Research Computer Engineering Department
504 ## - BİBLİYOGRAFİ NOTU
Bibliyografi Notu Includes bibliography (sheets 99-103)
520 ## - ÖZET NOTU
Özet notu ABSTRACT<br/>In this study, a novel maximum activated channel localization framework was created for extracting DeepGait features. In addition, as the models with fewer operations help realize the performance of intelligent computing systems, a Channel-Activated Mapping Network (CAMNet) for DeepGait feature extraction with less operation without dimension decomposition was proposed. More explicitly, the CAMNet is composed of an improved GEINet (three progressive triplets of convolution, batch normalization, and ReLu layers and then two internal max-pooling layers), an external max-pooling to capture the Spatio-temporal information of multiple frames in one gait period. We conducted experiments to validate the effectiveness of the proposed novel algorithm in terms of cross-view gait recognition in both cooperative and uncooperative settings using the state-of-the-art Osaka University Multi-View Large Population OU-MVLP dataset. The OU-MVLP dataset includes 10,307 subjects. As a result, we confirmed that the CAMNet+KNN significantly outperformed state-of-the-art approaches using the same dataset at the rear angles of 180, 195, 210, and 225, in both cooperative and uncooperative settings. The study also gives a comprehensive insight into the natural adversaries found in a multi-view large population dataset. Based on the analyses carried out on the OU-MVLP dataset, we have found that capturing gait frames at view angles 45o gives an equal number of frames in multiple sequences. However, 30o is the second view angle that also gives an equal number of frames in multiple sequences. In terms of age groups, 9-12 is the group that was found to have a higher percentage of subjects with an equal number of frames among the two sequences.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Data sets
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Computer algorithms
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Computer engineering
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Çelebi, Erbuğ
İlişkili Terim supervisor
9 (RLIN) 1665
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Yer Numarası Demirbaş Numarası Son Görülme Tarihi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Tez Koleksiyonu 03.12.2021 Bağış D 267 M94 2021 T2535 03.12.2021 03.12.2021 Thesis Computer Engineering Department
    Dewey Onlu Sınıflama Sistemi     CIU LIBRARY CIU LIBRARY Görsel İşitsel 03.12.2021 Bağış D 267 M94 2021 CDT2535 03.12.2021 03.12.2021 Suppl. CD Computer Engineering Department
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular