ESTIMATION OF SOLAR RADIATION WITH ADVANCED MACHINE LEARNING ENSEMBLE TECHNIQUES / (Kayıt no. 285391)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03066nam a22003017a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20230424101501.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 221011d2022 cy ||||| m||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 2636
Cutter no Z43 2022
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Zidan, Tareq Abdalkarim
245 10 - ESER ADI BİLDİRİMİ
Başlık ESTIMATION OF SOLAR RADIATION WITH ADVANCED MACHINE LEARNING ENSEMBLE TECHNIQUES /
Sorumluluk Bildirimi TAREQ ABDALKARIM ZIDAN; SUPERVISOR: ASSOC. PROF. DR. HÜSEYİN ÖZTOPRAK
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2022
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 51 sheets;
Boyutları 31 cm.
Birlikteki Materyal Includes CD
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Electrical and Electronics Engineering Department
504 ## - BİBLİYOGRAFİ NOTU
Bibliyografi Notu Includes bibliography (sheets 46-51)
520 ## - ÖZET NOTU
Özet notu ABSTRACT Over decades, the applications of solar energy as in power supply, water supply, agriculture, and transportation have been increasing exponentially. However, reliable and efficient planning, design, operation, and monitoring of solar energy systems, requires accurate information on the available solar radiation. However, measurement of solar radiation especially in the developing nations is quite challenging, due to the cost of purchasing the measuring instruments, coupled with their calibration and maintenance. Meanwhile, information on the solar radiation in those regions is estimated using data-driven computational techniques. Several models have been proposed for solar radiation estimation, ranging from empirical, intelligent (machine learning). However, these models often produce unsatisfactory results. In this regard, the objective of this thesis is to investigate the application of advanced ensemble machine learning models for the estimation of solar radiation in four major cities of Libya, namely; Benghazi, Misurata, Sebha and Tripoli. Two ensemble techniques are employed; the averaging ensemble (AE) and neuro-fuzzy ensemble. The ensemble models are developed by combining three single machine learning models namely; Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference System (ANFIS). The models are developed using meteorological data consisting of relative humidity (RH), Wind Speed (WS), Maximum Temperature, Minimum Temperature, Mean Temperature and Rainfall as predictors. The simulation results indicated that the NFE provide the highest accuracy in all the study areas. The developed models can reliable be used as alternative tool for estimation of solar radiation in the study areas. Keywords: Ensemble Machine Learning, Estimation, Machine Learning, Modelling, Solar Radiation.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Machine learning
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Ensemble learning (Machine learning)
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Solar radiation
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Öztoprak, Hüseyin
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Yer Numarası Demirbaş Numarası Son Görülme Tarihi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Tez Koleksiyonu 11.10.2022 Bağış YL 2636 Z43 2022 T2964 11.10.2022 11.10.2022 Thesis Electrical and Electronics Engineering Department
    Dewey Onlu Sınıflama Sistemi     CIU LIBRARY CIU LIBRARY Görsel İşitsel 11.10.2022 Bağış YL 2636 Z43 2022 CDT2964 11.10.2022 11.10.2022 Suppl. CD Electrical and Electronics Engineering Department
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular