INCREASED DEPTH OF 3D RESIDUAL UNET NETWORK ARCHITECTURE WITH AN ATTENTION GATE FOR BRAIN TUMORS SEGMENTATION / (Kayıt no. 288938)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03767nam a22002897a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20230424140657.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 221028d2022 cy ||||| m||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 2532
Cutter no M64 2022
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Mohamed, Abdiwali Abdullahi
245 10 - ESER ADI BİLDİRİMİ
Başlık INCREASED DEPTH OF 3D RESIDUAL UNET NETWORK ARCHITECTURE WITH AN ATTENTION GATE FOR BRAIN TUMORS SEGMENTATION /
Sorumluluk Bildirimi ABDIWALI ALI ABDULLAHI MOHAMED; SUPERVISOR: ASST. PROF. DR. UMAR ÖZGÜNALP
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2022
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 64 sheets;
Boyutları 31 cm.
Birlikteki Materyal Includes CD
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Electrical and Electronics Engineering Department
504 ## - BİBLİYOGRAFİ NOTU
Bibliyografi Notu Includes bibliography (sheets 56-62)
520 ## - ÖZET NOTU
Özet notu ABSTRACT<br/>Gliomas are one the deadliest forms of brain tumor, often resulting in a short life when they reach a high grade. Early detection of glioma is critical for patient survival. Magnetic resonance images (MRI) are frequently used to evaluate brain malignancies. Segmenting tumors from Magnetic resonance images of the brain is one of the highest priorities areas of medical science. Semantic segmentation gives detection information and helps doctors know the disease's early stage. A convolutional neural network is highly effective in segmenting medical images. This study presents a new deep learning method for accurate brain tumor segmentation that can be modified and expand the residual unet architecture. It increases the network's depth while keeping an extremely high level of accuracy. This study proposes a deep learning network architecture called increased depth of 3D Residual UNET Network Architecture with an attention gate for Brain Tumors Segmentation, which contains an attention gate and advanced 3D Residual UNET. The proposed architecture has increased the depth of the normal attention residual unet from four layers to six layers. However, the network loses a corresponding amount of spatial information, lowering segmentation performance. The 3D UNet transmits contextual and spatial information from the encoder part to the decoder by using skip links. Consequently, critical spatial information lost during down sampling can be recovered more effectively. By allowing only activations from important areas on the encoder side using attention gates and creating better feature mappings at the decoder, these modifications to the network enhanced the process of learning. Furthermore, the use of a combination of dice loss and focal loss helped the model in resolving class imbalance challenges where brain tumors have a significant imbalance between foreground and background classes. Because of this, the model has improved and got a better segmentation achievement. The model outperformed baseline models such as UNet, Residual UNet, and attention gates with Residual UNet. Three separate datasets are evaluated to demonstrate that the presented model is superior to its baseline models and the existing state-of-the-art segmentation approaches. The suggested model was tested on BraTS 2020, BraTS 2019, and BraTS 2018 datasets. The model achieved the dice coefficient scores for WT, TC, and ET of 93.91%, 93.01%, and 89.21% on the BraTS 2020 dataset, 88.44%, 75.11%, and 79.87% on the BraTS 2019 dataset, and 88.36%, 83.17%, and 78.19% on the BraTS 2018 dataset, respectively.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Tumors
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Brain
Alt başlık biçimi Dissertations, Academic
Genel Alt Konu Tumors
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Özgünalp, Umar
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Yer Numarası Demirbaş Numarası Son Görülme Tarihi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Tez Koleksiyonu 28.10.2022 Bağış YL 2532 M64 2022 T2853 28.10.2022 28.10.2022 Thesis Electrical and Electronics Engineering Department
    Dewey Onlu Sınıflama Sistemi     CIU LIBRARY CIU LIBRARY Görsel İşitsel 28.10.2022 Bağış YL 2532 M64 2022 CDT2853 28.10.2022 28.10.2022 Suppl. CD Electrical and Electronics Engineering Department
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular