APPLICATION OF TRANSFER LEARNING FOR THE DETECTION OF TUBERCULOSIS FROM MICROSCOPIC SLIDE AND CHEST X-RAY IMAGES / (Kayıt no. 289011)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03574nam a22003017a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20230419084605.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 221104d2022 cy ||||| m||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 2455
Cutter no L29 2022
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Lawal, Misbahu Koramar
245 10 - ESER ADI BİLDİRİMİ
Başlık APPLICATION OF TRANSFER LEARNING FOR THE DETECTION OF TUBERCULOSIS FROM MICROSCOPIC SLIDE AND CHEST X-RAY IMAGES /
Sorumluluk Bildirimi MISHABU KORAMAR BOKO LAWAL; SUPERVISOR: Asst. Prof. Dr. Kamil YURTKAN
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2022
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 46 sheets;
Boyutları 31 cm.
Birlikteki Materyal Includes CD
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Bioengineering Department
504 ## - BİBLİYOGRAFİ NOTU
Bibliyografi Notu Includes bibliography (sheets 37-40)
520 ## - ÖZET NOTU
Özet notu ABSTRACT<br/>Tuberculosis can be detected from microscopic slides and chest X-ray images. The motivation of the automatic detection systems for tuberculosis is the high cases of tuberculosis. The particular detection problems can be solved by employing an AI-driven model which learn features. In this thesis, an automated detection model is presented using X-ray and microscopic slide images to detect tuberculosis into positive and negative cases. A pretrained Alexnet model is employed. The experiments are done on Chest X-ray dataset made available on Kaggle repository and microscopic slide images from both Federal Medical Center Zamfara and Kaggle repository. For classification of tuberculosis using microscopic slide images, the model recorded 90.56 testing accuracy, 97.78% testing sensitivity and 83.33% testing specificity for 70: 30 training and testing splits, 100% testing accuracy, 100% testing sensitivity and 100% testing specificity for 80:20 split, 96.67% testing accuracy, 93.33% testing sensitivity and 100% testing specificity for 90:10 training and testing split and 94.66% average testing accuracy, 98.33% average testing sensitivity and 91.00 % average testing specificity after cross validation. For classification of tuberculosis using X-ray images, the used method achieved 93.89% testing, 96.67% testing sensitivity and 91.11% testing specificity for 70:30 training and testing splits, 94.17% testing accuracy, 98.33% testing sensitivity and 90% testing specificity for 80:20 training and testing split, 98.33% testing accuracy, 100% testing sensitivity and 96.67% testing specificity for 90:10 training and testing split and 94.00% average testing accuracy, 98.33% average testing sensitivity and 98.33% average testing specificity after cross validation. Our results are following the notion that pretrained convolutional neural network models can take part for categorizing medical images with acceptable accuracy. These particular models can be used as a confirmatory tool for diagnosis of both pneumonia and tuberculosis, augmenting miss diagnosis and bring an option for the higher and monotonous workload faced by specialists, radiologists and pathologists in Federal Medical Centre Zamfara.<br/>Keywords: Chest X-ray, deep learning, microscopic slide, pretrained network, AlexNet, Tuberculosis, transfer learning.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Deep learning (Machine learning)
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Tuberculosis
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Transfer learning (Machine learning)
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Yurtkan, Kamil
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Yer Numarası Demirbaş Numarası Son Görülme Tarihi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Tez Koleksiyonu 04.11.2022 Bağış YL 2455 L29 2022 T2768 04.11.2022 04.11.2022 Thesis Bioengineering Department
    Dewey Onlu Sınıflama Sistemi     CIU LIBRARY CIU LIBRARY Görsel İşitsel 04.11.2022 Bağış YL 2455 L29 2022 CDT2768 04.11.2022 04.11.2022 Suppl. CD Bioengineering Department
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular