GENDER PREDICTION FROM INLINE SIGNITURE BIOMETRICS / (Kayıt no. 289794)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03231nam a22002897a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20230414092205.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 230227d2022 cy ||||| m||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 2732
Cutter no K27 2022
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Kargbo, Mustapha Mohamed
245 10 - ESER ADI BİLDİRİMİ
Başlık GENDER PREDICTION FROM INLINE SIGNITURE BIOMETRICS /
Sorumluluk Bildirimi MUSTAPHA MOHAMED KARGBO; SUPERVISOR: ASST. PROF. DR. YASEMIN BAY AZYEREN
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2022
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 53 sheets;
Boyutları 31 cm.
Birlikteki Materyal Includes CD
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Management Information Systems Department
504 ## - BİBLİYOGRAFİ NOTU
Bibliyografi Notu Includes bibliography (sheets 48-53)
520 ## - ÖZET NOTU
Özet notu ABSTRACT<br/>With the improvement and huge introduction of technological devices and systems, <br/>the use of biometrics has become a very important inclusion in our lives to increase <br/>the level of confidence and security with access privileges to approved or certified <br/>individuals. One of the most popular applications of biometrics is signature biometrics, <br/>especially in terms of identification and/or verification process; however, it is not <br/>limited to this, and it reveals high-level discriminative physiological features. <br/>Although modalities of soft biometrics do provide details about an individual which is <br/>important for forensics when specified identities cannot be provided, they also include <br/>non-unique attributes of individuals like gender, age, ethnicity, presence of scars or<br/>tattoos, etc. The purpose of this study is to predict gender from the online signatures <br/>of an individual applying different feature sets during the classification process. <br/>In this study, Cyprus International University's handwriting and signature database is <br/>used for the investigation and prediction of gender from online signature biometrics. <br/>The database comprises 134 participants’ signatures, providing 8040 signature <br/>samples in total. The prediction is executed in three fundamental steps; feature <br/>selection, feature extraction, and classification. The feature selection method using <br/>WEKA helped to achieve the goal of gaining a better understanding of pattern <br/>recognition in gender prediction from online signature biometrics and this helped to <br/>achieve high accuracy levels using different classification methods such as KNN, <br/>Random Forest, and JRip.<br/>There were 5 experiments conducted in total using different sample sizes and feature <br/>sets and high gender prediction accuracy rates were obtained in all experiments which <br/>proves that signature biometrics contain valuable information especially gender and it <br/>is possible to predict gender from one’s signature. The highest result was obtained in <br/>Experiment 3 with 97 % accuracy.<br/>Keywords: Biometric, Gender Prediction, Online Signature, Machine Learning
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Biometry
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Machine learning
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Azyeren, Yasemin Bay
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Yer Numarası Demirbaş Numarası Son Görülme Tarihi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Tez Koleksiyonu 27.02.2023 Bağış YL 2732 K27 2022 T3061 27.02.2023 27.02.2023 Thesis Management Information Systems Department
    Dewey Onlu Sınıflama Sistemi     CIU LIBRARY CIU LIBRARY Görsel İşitsel 27.02.2023 Bağış YL 2732 K27 2022 CDT3061 27.02.2023 27.02.2023 Suppl. CD Management Information Systems Department
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular