DNS TUNNEL DETECTION WITH ARTIFICIAL INTELLIGENCE / (Kayıt no. 290544)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03112nam a22002657a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20230710115442.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 230710d2023 cy ||||| m||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 2893
Cutter no E93 2023
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Eyabi, Gideon Ebi
245 10 - ESER ADI BİLDİRİMİ
Başlık DNS TUNNEL DETECTION WITH ARTIFICIAL INTELLIGENCE /
Sorumluluk Bildirimi GIDEON EBI EYABI; SUPERVISOR: ASST. PROF. DR. DEVRIM SERAL
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2023
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. viii, 50 sheets;
Boyutları 31 cm.
Birlikteki Materyal Includes CD
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Computer Engineering Department
504 ## - BİBLİYOGRAFİ NOTU
Bibliyografi Notu Includes bibliography (sheets 49-50)
520 ## - ÖZET NOTU
Özet notu ABSTRACT<br/>The network protocol that translates human-readable names like afraid.com into <br/>computational figures like IP addresses that the computer can understand is called <br/>DNS. Without DNS, it would be impossible to memorize all the IP addresses of <br/>various sites on the internet. In the OSI hierarchy of layers, the DNS appears in the <br/>application layer. The DNS uses the UDP and TCP to transmit data.<br/>In this paper, the effects of DNS tunneling on corporate networks will be investigated <br/>and a possible solution will be approached using artificial intelligence. Basically, this <br/>paper will focus on the use of models like K Nearest neighbors, Gaussian Naïve Bias, <br/>and the Decision tree Classifiers. These 3 models were chosen due to their individual <br/>capabilities. The Nearest K Neighbors is best for its ability to store trained data, and <br/>ease the process by letting the algorithm almost bypass the trained dataset phase <br/>directly to the testing phase. Thus, when using the K Nearest neighbor as the chosen <br/>algorithm and a new test data x is observed, it immediately searches new data in the <br/>trained data closest to the data x and gets a prediction. Thus, limiting the phase of <br/>training each time new data is presented. Also, Decision tree was used because it has <br/>the ability to group similar data in the trained phase as nodes, such that if new data is <br/>presented at the test data, it searches prediction based on the closeness of the data to <br/>defined node groups. Also, the Gaussian Naïve Bias uses some probability functions <br/>to predict future events. Thus, having the knowledge of the trained data B, the Naïve <br/>Bias will be able to predict the probability P(A/B). The above algorithms were chosen <br/>because they give predictions similar to what is expected in DNS tunnel detection. <br/>DNS tunneling various ways through which the tunnels are setup on target systems. <br/>One way is through email poisoning, another is through malicious messages and so <br/>on. These classifies best fit these scenarios as they are fully equipped for feature <br/>predictions based on stored trained data.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Internet domain names
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Computer networks
Alt başlık biçimi Dissertations, Academic
Genel Alt Konu Security measures
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Yer Numarası Demirbaş Numarası Son Görülme Tarihi Fatura Tarihi Materyal Türü Genel / Bağış Notu Toplam Ödünçverme
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Tez Koleksiyonu 10.07.2023 Bağış YL 2893 E93 2023 T3276 10.07.2023 10.07.2023 Thesis Computer Engineering Department  
    Dewey Onlu Sınıflama Sistemi     CIU LIBRARY CIU LIBRARY Görsel İşitsel 10.07.2023 Bağış YL 2893 E93 2023 CDT3276 10.07.2023 10.07.2023 Suppl. CD Computer Engineering Department  
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular