COMPARATIVE ASSESSMENT OF DIFFERENT MACHINE LEARNING ALGORITHMS FOR NO2 AND SO2 CONCENTRATION PREDICTION / (Kayıt no. 290576)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03336nam a22002897a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20230713095529.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 230713d2023 cy ||||| m||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 2896
Cutter no A73 2023
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Araromi, Olaoluwa Shadrack
245 10 - ESER ADI BİLDİRİMİ
Başlık COMPARATIVE ASSESSMENT OF DIFFERENT MACHINE LEARNING ALGORITHMS FOR NO2 AND SO2 CONCENTRATION PREDICTION /
Sorumluluk Bildirimi OLAOLUWA SHADRACK ARAROMI; SUPERVISOR: ASSOC. PROF. DR. SEDEF ÇAKIR
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2023
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. xi, 88 sheets;
Boyutları 31 cm.
Birlikteki Materyal Includes CD
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Environmental Sciences Department
504 ## - BİBLİYOGRAFİ NOTU
Bibliyografi Notu Includes bibliography (sheets 69-82)
520 ## - ÖZET NOTU
Özet notu ABSTRACT<br/>Air pollution is a significant environmental concern due to its negative impacts on <br/>human health and the environment. Accurate prediction of NO2 and SO2 levels is <br/>important for air quality management efforts, as it allows authorities to take <br/>preventative measures to mitigate potentially hazardous conditions. In this study, <br/>machine-learning techniques were used to predict hourly concentration of NO2 and <br/>daily concentration of SO2 pollutant levels using a range of input variables including <br/>wind speed, temperature, pressure, relative humidity, hour, day, year, and month. Data <br/>was used between 2012 and 2015, and 15 different models were constructed using <br/>various combinations of input variables for both pollutant considered. The algorithms <br/>utilized were extreme gradient boost, light gradient boost, random forest, support <br/>vector regression. The machine learning models were compared with the multiple <br/>linear regression. Seasonal predictions were also made using these models, and the <br/>results showed that the combination of input variables and model used significantly <br/>influenced the accuracy of the predictions. The models with the lowest root mean <br/>squared error (RMSE) and mean squared error (MSE) values were the Light GBM and <br/>XGBoost models, with the Light GBM algorithm showing the best prediction with an <br/>R-value of 0.778 for model B, which included 7 input variables. The results also <br/>showed that the inclusion of the pressure variable in model A (8 input variables) <br/>reduced the prediction accuracy for the XGBoost model. The random forest model <br/>provided the most accurate predictions overall, particularly for the fall season. These <br/>findings demonstrate the importance of both the number and type of input variables in <br/>predicting NO2 levels and the potential for machine learning to support air quality <br/>management efforts. It is also seen in the result that the XGBoost showed the most <br/>accurate prediction for the seasons considered, except from summer, where the random <br/>forest algorithm gave a better accuracy for SO2 prediction<br/>Key words: Machine learning, NO2, Prediction, Random Forest, Root Mean Square,<br/>Seasonal, SO2
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Machine learning
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Nitrogen dioxide
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Sulfur dioxide
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Çakır, Sedef
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Yer Numarası Demirbaş Numarası Son Görülme Tarihi Fatura Tarihi Materyal Türü Genel / Bağış Notu Toplam Ödünçverme
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Tez Koleksiyonu 13.07.2023 Bağış YL 2896 A73 2023 T3254 13.07.2023 13.07.2023 Thesis Environmental Sciences Department  
    Dewey Onlu Sınıflama Sistemi     CIU LIBRARY CIU LIBRARY Depo 13.07.2023 Bağış YL 2896 A73 2023 CDT3254 13.07.2023 13.07.2023 Suppl. CD Environmental Sciences Department  
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular