MARC ayrıntıları
000 -BAŞLIK |
Sabit Uzunluktaki Kontrol Alanı |
02820nam a22003017a 4500 |
003 - KONTROL NUMARASI KİMLİĞİ |
Kontrol Alanı |
KOHA |
005 - EN SON İŞLEM TARİHİ ve ZAMANI |
Kontrol Alanı |
20230713105946.0 |
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ |
Sabit Alan |
230713d2023 cy ||||| m||| 00| 0 eng d |
040 ## - KATALOGLAMA KAYNAĞI |
Özgün Kataloglama Kurumu |
CY-NiCIU |
Kataloglama Dili |
eng |
Çeviri Kurumu |
CY-NiCIU |
Açıklama Kuralları |
rda |
041 ## - DİL KODU |
Metin ya da ses kaydının dil kodu |
eng |
090 ## - Yerel Tasnif No |
tasnif no |
YL 2931 |
Cutter no |
A48 2023 |
100 1# - KİŞİ ADI |
Yazar Adı (Kişi adı) |
Agunta, Wisdom Chigozie |
245 10 - ESER ADI BİLDİRİMİ |
Başlık |
DEEP LEARNING APPROACH USING CNN MODELS TOWARDS EFFECTUAL TREATMENT OF PARKINSON DISEASE / |
Sorumluluk Bildirimi |
WISDOM CHIGOZIE AGUNTA SUPERVISOR ASSOC. PROF. DR. HÜSEYIN ÖZTOPRAK |
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Date of production, publication, distribution, manufacture, or copyright notice |
2023 |
300 ## - FİZİKSEL TANIMLAMA |
Sayfa, Cilt vb. |
xiii, 65 sheets; |
Boyutları |
31 cm. |
Birlikteki Materyal |
Includes CD |
336 ## - CONTENT TYPE |
Source |
rdacontent |
Content type term |
text |
Content type code |
txt |
337 ## - MEDIA TYPE |
Source |
rdamedia |
Media type term |
unmediated |
Media type code |
n |
338 ## - CARRIER TYPE |
Source |
rdacarrier |
Carrier type term |
volume |
Carrier type code |
nc |
502 ## - TEZ NOTU |
Tez Notu |
Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Information Technologies Department |
504 ## - BİBLİYOGRAFİ NOTU |
Bibliyografi Notu |
Includes bibliography (sheets 60-65) |
520 ## - ÖZET NOTU |
Özet notu |
ABSTRACT<br/>This thesis proposal aims to explore the potential of utilizing convolutional neural <br/>network, in particular, deep learning techniques (CNN) models, to improve the <br/>efficacy of treatment options for individuals diagnosed with Parkinson's Disease (PD). <br/>The proposed research will focus on developing and evaluating advanced CNN models <br/>that can accurately predict the progression of PD and assist in the selection of <br/>personalized treatment options. A comprehensive dataset of imaging and clinical data <br/>from individuals with PD will be collected and used to train and evaluate the <br/>performance of the proposed CNN models. The proposed research will also investigate <br/>the incorporation of state-of-the-art CNN architectures such as MobileNet_v2 to <br/>enhance the capabilities of the models in accurately predicting PD progression. <br/>Accuracy, precision, recall, and F1 score will be used to objectively assess the models' <br/>performance. The results will then be studied to ascertain whether CNN models have <br/>the potential to enhance PD treatment options. The results of this investigation will <br/>have important ramifications for the development of more accurate and personalized <br/>treatment options for PD and will contribute to the ongoing efforts to improve the <br/>management and treatment of this debilitating disorder. <br/>Keywords: Clinical data, CNN models, Deep learning, Development, Effectual, <br/>Imaging data, Implications, Management, MobileNet, MobileNet_v2, Ongoing <br/>efforts, Personalized medicine, Personalized treatment, Parkinson's disease, <br/>Progression prediction, Treatment. |
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ |
Konusal terim veya coğrafi ad |
Deep learning (Machine learning) |
Alt başlık biçimi |
Dissertations, Academic |
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ |
Konusal terim veya coğrafi ad |
Precision medicine |
Alt başlık biçimi |
Dissertations, Academic |
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ |
Konusal terim veya coğrafi ad |
Therapeutics |
Alt başlık biçimi |
Dissertations, Academic |
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ |
Konusal terim veya coğrafi ad |
Parkinson's disease |
Alt başlık biçimi |
Dissertations, Academic |
700 1# - EK GİRİŞ - KİŞİ ADI |
Yazar Adı (Kişi adı) |
Öztoprak, Hüseyin |
İlişkili Terim |
supervisor |
942 ## - EK GİRİŞ ÖGELERİ (KOHA) |
Sınıflama Kaynağı |
Dewey Onlu Sınıflama Sistemi |
Materyal Türü |
Thesis |