COMPARISON OF WELL-KNOWN CONVOLUTIONAL NEURAL NETWORKS IMAGE CLASSIFICATION MODELS ON THE CIFAR-10 DATASET / (Kayıt no. 291575)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03191nam a22002777a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20231027160910.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 231027d2023 cy ||||| m||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 3165
Cutter no A46 2023
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Ahed, Umar Bindir
245 10 - ESER ADI BİLDİRİMİ
Başlık COMPARISON OF WELL-KNOWN CONVOLUTIONAL NEURAL NETWORKS IMAGE CLASSIFICATION MODELS ON THE CIFAR-10 DATASET /
Sorumluluk Bildirimi UMAR BINDIR AHMED; SUPERVISOR: ASSOC. PROF. DR. UMAR ÖZGÜNALP
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2023
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. xi, 62 sheets;
Boyutları 31 cm.
Birlikteki Materyal 1 CD-ROM
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Electrical and Electronics Engineering Department
504 ## - BİBLİYOGRAFİ NOTU
Bibliyografi Notu Includes bibliography (sheets 60-62)
520 ## - ÖZET NOTU
Özet notu ABSTRACT<br/>In this research, a supervised learning method is used to assess the performance of <br/>well-known deep convolutional neural network models for image classification on the <br/>CIFAR-10 dataset. VGGNet, GoogLeNet, ResNet, and AlexNet are the four models <br/>that were trained and evaluated using a variety of measures, including loss and <br/>accuracy.<br/>ResNet and VGGNet obtained the greatest test accuracy of 78.15% when comparing <br/>the performances of deep convolutional neural network models during training and <br/>testing. AlexNet and GoogleNet came in second and third, with the highest test <br/>accuracy of 77.5% and 74.41%, respectively. These outcomes suggest that the deep <br/>convolutional neural network models in a supervised method are capable of <br/>successfully categorizing CIFAR-10 images with reasonably small loss values, as <br/>shown in Table 4.1.<br/>The findings underscore the significance of meticulous planning and execution of <br/>training and testing methodologies for deep convolutional neural networks in <br/>supervised learning scenarios to efficiently exploit data with annotations. One may <br/>investigate various strategies, including data augmentation, regularization, and <br/>learning rate scheduling, to enhance the effectiveness of the models. <br/>The result of this investigation emphasizes the importance of precise preparation and <br/>implementation of training and testing procedures in deep convolutional neural <br/>networks in supervised learning in order to maximize their capacity for learning. <br/>Further investigation is necessary to tackle the limitations and challenges that occur <br/>with maximizing the use of data with annotations.<br/>The study at issue offers major findings regarding the impact and implications of the <br/>models utilized on the CIFAR-10 dataset. The findings contribute to an understanding of the strengths and weaknesses of these approaches, guiding future research to enhance the performance of the image classification models.<br/>Keywords: Alexnet, CIFAR-10 Dataset, Convolutional Neural Networks, Googlenet, <br/>Image Classification, Resnet, Vggnet
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Neural networks (Computer science)
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Data sets
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Özgünalp, Umar
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Yer Numarası Demirbaş Numarası Son Görülme Tarihi Fatura Tarihi Materyal Türü Genel / Bağış Notu Toplam Ödünçverme
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Tez Koleksiyonu 27.10.2023 Bağış YL 3165 A46 2023 T3546 27.10.2023 27.10.2023 Thesis Electrical and Electronics Engineering Department  
    Dewey Onlu Sınıflama Sistemi     CIU LIBRARY CIU LIBRARY Görsel İşitsel 27.10.2023 Bağış YL 3165 A46 2023 CDT3546 27.10.2023 27.10.2023 Suppl. CD Electrical and Electronics Engineering Department  
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular