MARC ayrıntıları
000 -BAŞLIK |
Sabit Uzunluktaki Kontrol Alanı |
03291nam a22002897a 4500 |
003 - KONTROL NUMARASI KİMLİĞİ |
Kontrol Alanı |
KOHA |
005 - EN SON İŞLEM TARİHİ ve ZAMANI |
Kontrol Alanı |
20231030090942.0 |
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ |
Sabit Alan |
231030d2023 cy ||||| m||| 00| 0 eng d |
040 ## - KATALOGLAMA KAYNAĞI |
Özgün Kataloglama Kurumu |
CY-NiCIU |
Kataloglama Dili |
eng |
Çeviri Kurumu |
CY-NiCIU |
Açıklama Kuralları |
rda |
041 ## - DİL KODU |
Metin ya da ses kaydının dil kodu |
eng |
090 ## - Yerel Tasnif No |
tasnif no |
YL 3163 |
Cutter no |
H25 2023 |
100 1# - KİŞİ ADI |
Yazar Adı (Kişi adı) |
Hakizimana, Lyse Deborah |
245 10 - ESER ADI BİLDİRİMİ |
Başlık |
EVALUATING CUSTOMER SATISFACTION USING MACHINE LEARNING TECHNIQUES / |
Sorumluluk Bildirimi |
LYSE DEBORAH HAKIZIMANA; SUPERVISOR: ASST. PROF. DR KIAN JAZAYERI |
246 23 - DEĞİŞİK BAŞLIK FORMU |
Başlık uygun / kısa başlık |
CASE STUDY OF U.S. AIRLINE INDUSTRY |
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Date of production, publication, distribution, manufacture, or copyright notice |
2023 |
300 ## - FİZİKSEL TANIMLAMA |
Sayfa, Cilt vb. |
vii, 51 sheets; |
Boyutları |
31 cm. |
Birlikteki Materyal |
1 CD-ROM |
336 ## - CONTENT TYPE |
Source |
rdacontent |
Content type term |
text |
Content type code |
txt |
337 ## - MEDIA TYPE |
Source |
rdamedia |
Media type term |
unmediated |
Media type code |
n |
338 ## - CARRIER TYPE |
Source |
rdacarrier |
Carrier type term |
volume |
Carrier type code |
nc |
502 ## - TEZ NOTU |
Tez Notu |
Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Management Information Systems Department |
504 ## - BİBLİYOGRAFİ NOTU |
Bibliyografi Notu |
Includes bibliography (sheets 50-51) |
520 ## - ÖZET NOTU |
Özet notu |
ABSTRACT<br/>In today's industry environment, the airline company is increasingly focused on <br/>comprehending and responding to client needs and feedback to improve general <br/>levels of satisfaction. By measuring tweets sentiment, airlines can win a complete <br/>comprehension of customer‟s sentiments and opinions which can help airline <br/>industries in the creation of quality improvement plans. In this study, we used <br/>sentiment analysis, one of which understands text-sensitive applications, to find <br/>consumers‟ opinions. Machine learning algorithms have been developed for <br/>categorizing Twitter postings as positive, negative, or neutral. We trained our model <br/>on tweets from six US airlines, and this study explores the use of predictive analytics <br/>using the Naive Bayes algorithm which is a useful tool for extracting useful insights. <br/>The text data is cleaned using preprocessing techniques to ensure adequate input for <br/>the Naive Bayes classifier. Random Forest classifier and the K-Nearest Neighbors <br/>algorithm were combined with a model constraint classifier to increase the accuracy <br/>of Naive Bayes after selecting the most essential features using SelectKBest. This <br/>study examines the accuracy of Naive Bayes used for sentiment classification in <br/>Twitter data. The findings and insights can be utilized to discover effective practices <br/>as well as areas for more investment in order to improve customer satisfaction. The <br/>algorithm's probabilistic approach can classify tweets in negative, neutral, or positive <br/>sentiments by allowing airlines to identify areas of customer complaint and areas of <br/>excellence. In this work, the performance parameters of the proposed solution were <br/>considered to be recall, precision, and F1-score. Naive Bayes classifier shows a <br/>capacity to correctly categorize the opinions conveyed through tweets. The collected <br/>findings offer light on common consumer complaints, allowing airlines to promptly <br/>resolve issues and target initiatives to increase success.<br/>Keywords: Customer satisfaction, K-Nearest Neighbors, Naive Bayes, Random <br/>Forest, Select KBest, Sentiment Analysis, Stacking Model, Twitter Data and US <br/>Airline |
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ |
Konusal terim veya coğrafi ad |
Consumer satisfaction |
Alt başlık biçimi |
Dissertations, Academic |
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ |
Konusal terim veya coğrafi ad |
Sentiment analysis |
Alt başlık biçimi |
Dissertations, Academic |
700 1# - EK GİRİŞ - KİŞİ ADI |
Yazar Adı (Kişi adı) |
Jazayeri, Kian |
İlişkili Terim |
supervisor |
942 ## - EK GİRİŞ ÖGELERİ (KOHA) |
Sınıflama Kaynağı |
Dewey Onlu Sınıflama Sistemi |
Materyal Türü |
Thesis |