EVALUATING CUSTOMER SATISFACTION USING MACHINE LEARNING TECHNIQUES / (Kayıt no. 291578)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03291nam a22002897a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20231030090942.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 231030d2023 cy ||||| m||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 3163
Cutter no H25 2023
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Hakizimana, Lyse Deborah
245 10 - ESER ADI BİLDİRİMİ
Başlık EVALUATING CUSTOMER SATISFACTION USING MACHINE LEARNING TECHNIQUES /
Sorumluluk Bildirimi LYSE DEBORAH HAKIZIMANA; SUPERVISOR: ASST. PROF. DR KIAN JAZAYERI
246 23 - DEĞİŞİK BAŞLIK FORMU
Başlık uygun / kısa başlık CASE STUDY OF U.S. AIRLINE INDUSTRY
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2023
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. vii, 51 sheets;
Boyutları 31 cm.
Birlikteki Materyal 1 CD-ROM
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Management Information Systems Department
504 ## - BİBLİYOGRAFİ NOTU
Bibliyografi Notu Includes bibliography (sheets 50-51)
520 ## - ÖZET NOTU
Özet notu ABSTRACT<br/>In today's industry environment, the airline company is increasingly focused on <br/>comprehending and responding to client needs and feedback to improve general <br/>levels of satisfaction. By measuring tweets sentiment, airlines can win a complete <br/>comprehension of customer‟s sentiments and opinions which can help airline <br/>industries in the creation of quality improvement plans. In this study, we used <br/>sentiment analysis, one of which understands text-sensitive applications, to find <br/>consumers‟ opinions. Machine learning algorithms have been developed for <br/>categorizing Twitter postings as positive, negative, or neutral. We trained our model <br/>on tweets from six US airlines, and this study explores the use of predictive analytics <br/>using the Naive Bayes algorithm which is a useful tool for extracting useful insights. <br/>The text data is cleaned using preprocessing techniques to ensure adequate input for <br/>the Naive Bayes classifier. Random Forest classifier and the K-Nearest Neighbors <br/>algorithm were combined with a model constraint classifier to increase the accuracy <br/>of Naive Bayes after selecting the most essential features using SelectKBest. This <br/>study examines the accuracy of Naive Bayes used for sentiment classification in <br/>Twitter data. The findings and insights can be utilized to discover effective practices <br/>as well as areas for more investment in order to improve customer satisfaction. The <br/>algorithm's probabilistic approach can classify tweets in negative, neutral, or positive <br/>sentiments by allowing airlines to identify areas of customer complaint and areas of <br/>excellence. In this work, the performance parameters of the proposed solution were <br/>considered to be recall, precision, and F1-score. Naive Bayes classifier shows a <br/>capacity to correctly categorize the opinions conveyed through tweets. The collected <br/>findings offer light on common consumer complaints, allowing airlines to promptly <br/>resolve issues and target initiatives to increase success.<br/>Keywords: Customer satisfaction, K-Nearest Neighbors, Naive Bayes, Random <br/>Forest, Select KBest, Sentiment Analysis, Stacking Model, Twitter Data and US <br/>Airline
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Consumer satisfaction
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Sentiment analysis
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Jazayeri, Kian
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Yer Numarası Demirbaş Numarası Son Görülme Tarihi Fatura Tarihi Materyal Türü Genel / Bağış Notu Toplam Ödünçverme
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Tez Koleksiyonu 30.10.2023 Bağış YL 3163 H25 2023 T3544 30.10.2023 30.10.2023 Thesis Management Information Systems Department  
    Dewey Onlu Sınıflama Sistemi     CIU LIBRARY CIU LIBRARY Görsel İşitsel 30.10.2023 Bağış YL 3163 H25 2023 CDT3544 30.10.2023 30.10.2023 Suppl. CD Management Information Systems Department  
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular