AUTOMATED CONCRETE CRACK DETECTION USING DEEP LEARNING TECHNIQUES / (Kayıt no. 291640)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03899nam a22003017a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20231103100936.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 231103d2023 cy ||||| m||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 3114
Cutter no O46 2023
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Omnondiagbe, David Agbonjague
245 10 - ESER ADI BİLDİRİMİ
Başlık AUTOMATED CONCRETE CRACK DETECTION USING DEEP LEARNING TECHNIQUES /
Sorumluluk Bildirimi DAVID AGBONJAGUE OMONDIAGBE; SUPERVISOR: ASSOC. PROF. DR. TAMER TULGAR
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2023
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. xii, 116 sheets;
Boyutları 31 cm.
Birlikteki Materyal 1 CD-ROM
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Information Systems Engineering Department
504 ## - BİBLİYOGRAFİ NOTU
Bibliyografi Notu Includes bibliography (sheets 81-87)
520 ## - ÖZET NOTU
Özet notu ABSTRACT<br/>Concrete is one of the most commonly used material in civil engineering and <br/>construction. It is mainly used in the construction of buildings, bridges, pavements etc. <br/>These concrete infrastructures are prone to cracks and these cracks are caused by <br/>various factors. Early detection of concrete cracks guarantees the safety of concrete <br/>infrastructures. The main focus of this work is to develop an automated deep learning <br/>model for detecting concrete cracks. This research uses the Concrete Crack Image <br/>Classification (CCIC) dataset having two classes. The dataset is balanced containing <br/>20,000 images with cracks (positive class) and 20,000 images without cracks (negative <br/>class).<br/>In this work, the effect of converting images to grayscale and fine tuning hyper <br/>parameters (batch size and Adam LR) was investigated by performing several <br/>experiments. Converting the images to grayscale resulted in simpler models with <br/>reduced parameters due to the one channel of grayscale images as compared to the <br/>three channels of RGB images. Two different architectures of CNN models, CNN 1 <br/>and CNN 2 were built and trained on RGB and grayscale images. The experimental <br/>results revealed that there is no much significant difference in the performance of the <br/>RGB and grayscale CNN models. This means that concrete crack detection relies more <br/>on structural patterns rather than color information. Although, converting the images <br/>to grayscale allows the model to focus more on learning the crack features.<br/>The models were further tested on an external data different from the development <br/>data. In this experiment, the CNN 2 model using grayscale images (batch size of 32 <br/>and Adam learning rate of 0.001) outperformed the other models and is chosen as the <br/>proposed model. The proposed model achieved a little change decrease in the <br/>difference in performance between the development data and external data.<br/>In addition, the proposed model’s generalization ability was further validated using 10 <br/>fold cross validation method. This was done to ensure that the model is not overfitting. <br/>The proposed model achieved a mean accuracy of 99.74%, mean precision of 99.83%, <br/>mean recall of 99.65%, mean F1-score of 99.74%, mean specificity of 99.83%, and <br/>mean AUC ROC of 0.9974. These performances were further compared with seven <br/>previous concrete crack detection studies that have used the CCIC dataset. From the <br/>comparative analysis, the proposed model performed better than the solutions of six <br/>of these studies in all the performance metrics compared.<br/>Keywords: Computer Vision, Concrete Crack Detection, Convolutional Neural <br/>Network, Deep Learning
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Computer vision
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Concrete
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Neural networks (Computer science)
Alt başlık biçimi Dissertations, Academic
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Deep learning (Machine learning)
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Tulgar, Tamer
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Yer Numarası Demirbaş Numarası Son Görülme Tarihi Fatura Tarihi Materyal Türü Genel / Bağış Notu Toplam Ödünçverme
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Tez Koleksiyonu 03.11.2023 Bağış YL 3114 O46 2023 T3495 03.11.2023 03.11.2023 Thesis Information Systems Engineering Department  
    Dewey Onlu Sınıflama Sistemi     CIU LIBRARY CIU LIBRARY Görsel İşitsel 03.11.2023 Bağış YL 3114 O46 2023 CDT3495 03.11.2023 03.11.2023 Suppl. CD Information Systems Engineering Department  
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular