SELF-SUPERVISED CLUSTERING IN VANETS USING GRAPH NEURAL NETWORKS / (Kayıt no. 292747)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 02796nam a22002657a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20240923123517.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 240912d2024 cy ldj|| |||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 3432
Cutter no H37 2024
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Hassan, Israa Abdalla Ali
245 10 - ESER ADI BİLDİRİMİ
Başlık SELF-SUPERVISED CLUSTERING IN VANETS USING GRAPH NEURAL NETWORKS /
Sorumluluk Bildirimi ISRAA ABDALLA ALİ HASSAN ; SUPERVISOR, ASST. PROF. DR. ZIYA DEREBOYLU
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 64 sheets;
Birlikteki Materyal + 1 CD ROM
Boyutları 30 cm
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Electrical-Electronic Engineering
520 ## - ÖZET NOTU
Özet notu This thesis introduces a method to enhance the stability and efficiency of vehicular clusters in Vehicular Ad Hoc Networks (VANETs) by utilizing a clustering algorithm based on Graph Neural Networks (GNNs). As the number of vehicles on the road increases, problems such as traffic congestion, energy inefficiency, and air pollution have become more severe. This work tackles these issues by improving the stability of vehicle clusters, thereby boosting the efficiency of cooperative driving. Unlike conventional techniques that rely on periodic communication and the selection of cluster heads (CH), this approach uses a GNN model to create effective node representations, grouping vehicles with similar behaviours into stable clusters. The performance of the clustering methods was rigorously assessed using the open source highD dataset. The results demonstrated superior cluster longevity and efficiency compared to the K-means algorithm. The GNN model adeptly processes vehicular features, including speed, position, and acceleration, alongside graph data, using a force-directed algorithm to compute vehicle connectivity metrics. This innovative approach significantly reduces the overhead of control messages, thereby enhancing the overall system stability. The results of this research demonstrate that the GNN-based clustering algorithm, which incorporates both vehicular characteristics and graph structures, significantly surpasses traditional clustering methods. This positions it as a highly promising solution for advancing future intelligent transportation systems. By improving the management of vehicular clusters, this method contributes to more efficient and sustainable transportation networks, potentially leading to reduced traffic congestion, lower energy consumption, and diminished air pollution.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Electrical-Electronic Engineering
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Dereboylu, Ziya
İlişkili Terim Supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Toplam Ödünçverme Yer Numarası Demirbaş Numarası Son Görülme Tarihi Kopya Bilgisi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Depo 12.09.2024 Bağış   YL 3432 H37 2024 T3849 12.09.2024 C.1 12.09.2024 Thesis Electrical-Electronic Engineering
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Görsel İşitsel 12.09.2024 Bağış   YL 3432 H37 2024 CDT3849 12.09.2024 C.1 12.09.2024 Suppl. CD Electrical-Electronic Engineering
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular