IDENTITY PREDICTION FROM ONLINE HANDWRITING BIOMETRICS / (Kayıt no. 292748)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03376nam a22002657a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20240923111431.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 240912d2024 cy dj||| |||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 3453
Cutter no I27 2024
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Ibrahim, Sufıan Olayınka
245 10 - ESER ADI BİLDİRİMİ
Başlık IDENTITY PREDICTION FROM ONLINE HANDWRITING BIOMETRICS /
Sorumluluk Bildirimi SUFIAN OLAYINKA IBRAHIM ; SUPERVISOR, ASST. PROF. DR. YASEMIN BAY AZYEREN
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 53 sheets;
Birlikteki Materyal + 1 CD ROM
Boyutları 30 cm
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Management Information Systems
520 ## - ÖZET NOTU
Özet notu In the quickly changing world of today, it is more important than ever to correctly determine and confirm people's identities. By leading the development of an advanced system that uses online handwriting biometrics to dramatically alter the identity prediction process, this project is well-positioned to address this growing requirement. The core of this project is a thorough investigation of 42 unique characteristics that are present in the field of online handwriting biometrics. The project attempts to find and prioritize the most discriminative features, guaranteeing the robustness and reliability of the final system, through careful research and rigorous testing. Focusing on these essential characteristics will allow the system to capture the core of a person's handwriting style, making it highly confident in its ability to forecast that person's identity. The use of cutting-edge classification approaches, which will form the foundation of the identification prediction process, is essential to the project's success. By utilizing methods from pattern recognition and machine learning, these approaches will sort through enormous volumes of data and identify minute connections and patterns that could escape human scrutiny. Iteratively improving and optimizing, the system will keep improving its ability to predict handwriting patterns, allowing it to adjust to changing situations and be useful in a variety of settings. The goal of this project is to transform identity authentication by establishing a connection between state-of-the-art technical innovations and conventional verification techniques. Creating a framework that is more inclusive and accessible to everyone is the ultimate aim, going beyond simply optimizing current procedures. With the ability to improve security, fight fraud, and preserve the integrity of vital systems and services, this technology has a wide range of potential uses in the fields of banking, healthcare, and law enforcement. Essentially, this initiative marks a paradigm shift in how we address the fundamental subject of identity verification in the digital era, representing more than just a technological advance. In an increasingly connected world, we have the chance to not only improve and expedite current procedures but also open up new avenues for security, effectiveness, and trust by utilizing online handwriting biometrics.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Management Information Systems
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Azyeren, Yasemin Bay
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Toplam Ödünçverme Yer Numarası Demirbaş Numarası Son Görülme Tarihi Kopya Bilgisi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Depo 12.09.2024 Bağış   YL 3453 I27 2024 T3870 12.09.2024 C.1 12.09.2024 Thesis Management Information Systems
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Görsel İşitsel 12.09.2024 Bağış   YL 3453 I27 2024 CDT3870 12.09.2024 C.1 12.09.2024 Suppl. CD Management Information Systems
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular