SPEECH RECOGNITION USING RECURRENT NEURAL NETWORK AND CONVOLUTIONAL NEURAL NETWORK / (Kayıt no. 292842)
[ düz görünüm ]
000 -BAŞLIK | |
---|---|
Sabit Uzunluktaki Kontrol Alanı | 02716nam a22002657a 4500 |
003 - KONTROL NUMARASI KİMLİĞİ | |
Kontrol Alanı | KOHA |
005 - EN SON İŞLEM TARİHİ ve ZAMANI | |
Kontrol Alanı | 20241014092710.0 |
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ | |
Sabit Alan | 240924d2024 cy d a|| |||| 00| 0 eng d |
040 ## - KATALOGLAMA KAYNAĞI | |
Özgün Kataloglama Kurumu | CY-NiCIU |
Kataloglama Dili | eng |
Çeviri Kurumu | CY-NiCIU |
Açıklama Kuralları | rda |
041 ## - DİL KODU | |
Metin ya da ses kaydının dil kodu | eng |
090 ## - Yerel Tasnif No | |
tasnif no | YL 3365 |
Cutter no | A86 2024 |
100 1# - KİŞİ ADI | |
Yazar Adı (Kişi adı) | Atosha, Pascal Bahavu |
245 10 - ESER ADI BİLDİRİMİ | |
Başlık | SPEECH RECOGNITION USING RECURRENT NEURAL NETWORK AND CONVOLUTIONAL NEURAL NETWORK / |
Sorumluluk Bildirimi | PASCAL BAHAVU ATOSHA ; SUPERVISOR, ASST. PROF. DR. EMRE ÖZBİLGE |
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | 2024 |
300 ## - FİZİKSEL TANIMLAMA | |
Sayfa, Cilt vb. | 69 sheets : |
Boyutları | 30 cm |
Birlikteki Materyal | +1 CD ROM |
Diğer fiziki detaylar | illustrations, tables ; |
336 ## - CONTENT TYPE | |
Source | rdacontent |
Content type term | text |
Content type code | txt |
337 ## - MEDIA TYPE | |
Source | rdamedia |
Media type term | unmediated |
Media type code | n |
338 ## - CARRIER TYPE | |
Source | rdacarrier |
Carrier type term | volume |
Carrier type code | nc |
502 ## - TEZ NOTU | |
Tez Notu | Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Computer Engineering |
520 ## - ÖZET NOTU | |
Özet notu | The Recent years have seen tremendous advancements in speech recognition<br/>technology, which has become essential to many different applications, such as virtual<br/>assistants and transcription services. In order to improve the precision and resilience<br/>of speech recognition systems, this thesis investigates the combined use of recurrent<br/>neural networks (RNNs) and convolutional neural networks (CNNs). The study starts<br/>with a thorough analysis of the state-of-the-art speech recognition models, stressing<br/>the advantages and disadvantages of CNNs and RNNs. CNNs are skilled at obtaining<br/>organized characteristics based on spectrogram representations, whereas RNNs are<br/>best at gathering temporal dependencies in sequential data. This study suggests a<br/>combination of models that brings together the sequential learning skills of RNNs<br/>alongside the spatial feature mining prowess of CNNs, driven by their complementary<br/>strengths. Common metrics such as word error rate, match error rate, word information<br/>lost, and word information preserved were used to evaluate the performance of our<br/>combined model.With 0.2476 of word error rate, 0.0732 match error rate, 0.36 of word<br/>information lost, and 0.53 of word information preserved, our system achieved these<br/>results. The results of this research add to the current debate on the development of<br/>speech recognition technology by presenting a new method for combining the<br/>advantages of RNNs and CNNs in a way that maximizes their mutually beneficial<br/>impacts. For applications requiring accurate and reliable speech-to-text conversion,<br/>the proposed combined model shows promise, as speech recognition remains an<br/>essential part of interaction between humans and computers. |
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ | |
Konusal terim veya coğrafi ad | Computer Engineering |
Alt başlık biçimi | Dissertations, Academic |
700 1# - EK GİRİŞ - KİŞİ ADI | |
Yazar Adı (Kişi adı) | Özbilge, Emre |
İlişkili Terim | supervisor |
942 ## - EK GİRİŞ ÖGELERİ (KOHA) | |
Sınıflama Kaynağı | Dewey Onlu Sınıflama Sistemi |
Materyal Türü | Thesis |
Geri Çekilme Durumu | Kayıp Durumu | Sınıflandırma Kaynağı | Kredi için değil | Koleksiyon Kodu | Kalıcı Konum | Mevcut Konum | Raf Yeri | Kayıt Tarih | Source of acquisition | Toplam Ödünçverme | Yer Numarası | Demirbaş Numarası | Son Görülme Tarihi | Kopya Bilgisi | Fatura Tarihi | Materyal Türü | Genel / Bağış Notu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Onlu Sınıflama Sistemi | Tez Koleksiyonu | CIU LIBRARY | CIU LIBRARY | Depo | 24.09.2024 | Bağış | YL 3365 A86 2024 | T3782 | 24.09.2024 | C.1 | 24.09.2024 | Thesis | Computer Engineering | ||||
Dewey Onlu Sınıflama Sistemi | Tez Koleksiyonu | CIU LIBRARY | CIU LIBRARY | Görsel İşitsel | 24.09.2024 | Bağış | YL 3365 A86 2024 | CDT3782 | 24.09.2024 | C.1 | 24.09.2024 | Suppl. CD | Computer Engineering |