SPEECH RECOGNITION USING RECURRENT NEURAL NETWORK AND CONVOLUTIONAL NEURAL NETWORK / (Kayıt no. 292842)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 02716nam a22002657a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20241014092710.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 240924d2024 cy d a|| |||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 3365
Cutter no A86 2024
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Atosha, Pascal Bahavu
245 10 - ESER ADI BİLDİRİMİ
Başlık SPEECH RECOGNITION USING RECURRENT NEURAL NETWORK AND CONVOLUTIONAL NEURAL NETWORK /
Sorumluluk Bildirimi PASCAL BAHAVU ATOSHA ; SUPERVISOR, ASST. PROF. DR. EMRE ÖZBİLGE
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 69 sheets :
Boyutları 30 cm
Birlikteki Materyal +1 CD ROM
Diğer fiziki detaylar illustrations, tables ;
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Computer Engineering
520 ## - ÖZET NOTU
Özet notu The Recent years have seen tremendous advancements in speech recognition<br/>technology, which has become essential to many different applications, such as virtual<br/>assistants and transcription services. In order to improve the precision and resilience<br/>of speech recognition systems, this thesis investigates the combined use of recurrent<br/>neural networks (RNNs) and convolutional neural networks (CNNs). The study starts<br/>with a thorough analysis of the state-of-the-art speech recognition models, stressing<br/>the advantages and disadvantages of CNNs and RNNs. CNNs are skilled at obtaining<br/>organized characteristics based on spectrogram representations, whereas RNNs are<br/>best at gathering temporal dependencies in sequential data. This study suggests a<br/>combination of models that brings together the sequential learning skills of RNNs<br/>alongside the spatial feature mining prowess of CNNs, driven by their complementary<br/>strengths. Common metrics such as word error rate, match error rate, word information<br/>lost, and word information preserved were used to evaluate the performance of our<br/>combined model.With 0.2476 of word error rate, 0.0732 match error rate, 0.36 of word<br/>information lost, and 0.53 of word information preserved, our system achieved these<br/>results. The results of this research add to the current debate on the development of<br/>speech recognition technology by presenting a new method for combining the<br/>advantages of RNNs and CNNs in a way that maximizes their mutually beneficial<br/>impacts. For applications requiring accurate and reliable speech-to-text conversion,<br/>the proposed combined model shows promise, as speech recognition remains an<br/>essential part of interaction between humans and computers.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Computer Engineering
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Özbilge, Emre
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Toplam Ödünçverme Yer Numarası Demirbaş Numarası Son Görülme Tarihi Kopya Bilgisi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Depo 24.09.2024 Bağış   YL 3365 A86 2024 T3782 24.09.2024 C.1 24.09.2024 Thesis Computer Engineering
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Görsel İşitsel 24.09.2024 Bağış   YL 3365 A86 2024 CDT3782 24.09.2024 C.1 24.09.2024 Suppl. CD Computer Engineering
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular