AGE ESTIMATING USING HUMAN GAIT EXTRACTED FROM PREPROCESSED VIDEO / (Kayıt no. 292869)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03010nam a22002657a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20241009144550.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 240927d2024 cy de||| |||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no D 428
Cutter no M87 2024
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Musalhi, Nasser Humaid Shinoon Al
245 10 - ESER ADI BİLDİRİMİ
Başlık AGE ESTIMATING USING HUMAN GAIT EXTRACTED FROM PREPROCESSED VIDEO /
Sorumluluk Bildirimi NASSER HUMAID SHINOON AL MUSALHI ; SUPERVISOR, PROF. DR. ERBUĞ ÇELEBİ
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 139 sheets ;
Boyutları 30 cm
Birlikteki Materyal +1 CD ROM
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (PhD) - Cyprus International University. Institute of Graduate Studies and Research Computer Engineering
520 ## - ÖZET NOTU
Özet notu This research aims to address challenges in age prediction using gait analysis by<br/>analyzing human gait derived from preprocessed video data. The study identifies<br/>problems associated with the quality and preprocessing of video data, which can affect<br/>the accuracy of age estimation algorithms. The lack of comprehensive research on<br/>preprocessing methods and suitable datasets further complicates the development of<br/>reliable age estimation systems. The research aims to extract gait features, estimate<br/>human age based on gait, implement biometric gait recognition using machine<br/>learning, and evaluate the performance of the models.<br/>The results demonstrate the effectiveness of different deep learning-based models in<br/>estimating age based on gait data. The proposed Hybrid Model consistently achieves<br/>the highest accuracy, followed by DenseNet and ResNet models. The standard CNN<br/>model is the least accurate but still provides reasonable estimations among all other<br/>tasted CNN models. The Hybrid Model emerges as the most promising choice for age<br/>estimation due to its high accuracy and consistent performance.<br/>The study also addresses the issue of imbalanced class samples through the use of<br/>sparse categorical cross-entropy and class weight balance techniques. Both approaches<br/>improve the model's performance on imbalanced training and testing data, with the<br/>hybrid model maintaining high accuracy and stability. Comparing these models with<br/>state-of-the-art models, the proposed hybrid models with sparse categorical cross<br/>entropy or class weight balance outperform existing approaches in terms of accuracy.<br/>This research contributes novel approaches for preprocessing human gait images,<br/>developing hybrid models for age estimation, and utilizing sparse categorical cross<br/>entropy and class weight balance techniques to handle imbalanced class samples. The<br/>results demonstrate the effectiveness and potential of these approaches in improving<br/>the accuracy and reliability of age estimation algorithms based on human gait analysis.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Computer Engineering
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Çelebi, Erbuğ
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Toplam Ödünçverme Yer Numarası Demirbaş Numarası Son Görülme Tarihi Kopya Bilgisi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Depo 27.09.2024 Bağış   D 428 M87 2024 T3887 27.09.2024 C.1 27.09.2024 Thesis Computer Engineering
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Görsel İşitsel 27.09.2024 Bağış   D 428 M87 2024 CDT3887 27.09.2024 C.1 27.09.2024 Suppl. CD Computer Engineering
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular