POTHOLE DETECTION SYSTEM USING MACHINE LEARNING ON MOBILE DEVICE / (Kayıt no. 292961)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03358nam a22002657a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20250109090220.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 240927d2024 cy o|||| |||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 3467
Cutter no P48 2024
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Peter, Erikpara Gbesimi
245 10 - ESER ADI BİLDİRİMİ
Başlık POTHOLE DETECTION SYSTEM USING MACHINE LEARNING ON MOBILE DEVICE /
Sorumluluk Bildirimi ERIKPARA GBESIMI PETER ; SUPERVISOR, PROF. DR. ERBUĞ ÇELEBİ
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 83 sheets ;
Boyutları 30 cm
Birlikteki Materyal +1 CD ROM
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Computer Engineering
520 ## - ÖZET NOTU
Özet notu As vehicular traffic continues to increase globally, the condition of road surfaces has become a significant concern for both infrastructure integrity and public safety. Traditional road maintenance methods, often reliant on manual inspections, are labor-intensive and insufficiently comprehensive. This research addresses the urgent need for an effective solution to monitor and assess road damage through advanced technological methods. By focusing on the problem of detecting road defects like potholes and cracks, the study aims to develop a more efficient and accurate system for road condition assessment.<br/>To tackle this issue, the research employs a machine learning-based approach, specifically leveraging the YOLOv8n (You Only Look Once version 8n) object detection model for automatic road defect detection. The methodology includes collecting high-resolution images of road surfaces, preprocessing these images for optimal input, and training a Convolutional Neural Network (CNN) to identify and categorize various types of road damage. Additionally, the study explores the implementation of this model on mobile devices to assess its feasibility for real-time, on-site road condition evaluations.<br/>The experimental results reveal that the YOLOv8n model achieves a precision of 0.625 and a recall of 0.582, with an mAP50 score of 0.598 and an mAP50-95 score of 0.321. Performance evaluations indicate that the model can process images with an average inference time of 3.2 milliseconds and a total image processing time of approximately 7.4 milliseconds. Furthermore, the research explores the impact of varying the number of threads used in the mobile app, demonstrating that increasing the number of threads from 2 to 4 significantly reduces inference time, thus enhancing the efficiency of the detection system.<br/>In conclusion, this study successfully demonstrates the potential of machine learning techniques for road damage detection and the feasibility of implementing these methods on mobile devices for real-time applications. The findings highlight the effectiveness of YOLOv8n in detecting road defects and provide insights into optimizing system performance through threading strategies. Future work could explore further improvements in model accuracy, scalability for diverse road<br/>iii<br/>conditions, and integration with automated maintenance systems to better support road management efforts.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Computer Engineering
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Çelebi, Erbuğ
İlişkili Terim supervısor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Toplam Ödünçverme Yer Numarası Demirbaş Numarası Son Görülme Tarihi Kopya Bilgisi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Depo 16.10.2024 Bağış   YL 3467 P48 2024 T3914 16.10.2024 C.1 16.10.2024 Thesis Computer Engineering
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Görsel İşitsel 16.10.2024 Bağış   YL 3467 P48 2024 CDT3914 16.10.2024 C.1 16.10.2024 Suppl. CD Computer Engineering
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular