DETECTING INDICATORS OF MENTAL DISORDER IN SOCIAL MEDIA POSTS VIA HYBRID DEEP LEARNING AND NATURAL LANGUAGE PROCESSING / (Kayıt no. 292975)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 02938nam a22002657a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20250108101216.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 240927d2024 cy de||| |||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 3516
Cutter no A33 2024
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Ahadi, Seyedeh Aridis
245 10 - ESER ADI BİLDİRİMİ
Başlık DETECTING INDICATORS OF MENTAL DISORDER IN SOCIAL MEDIA POSTS VIA HYBRID DEEP LEARNING AND NATURAL LANGUAGE PROCESSING /
Sorumluluk Bildirimi SEYEDEH ARIDIS AHADI ; SUPERVISOR, ASST. PROF. DR. KIAN JAZAYERI
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 134 sheets ;
Boyutları 30 cm
Birlikteki Materyal +1 CD ROM
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Information Technologies
520 ## - ÖZET NOTU
Özet notu Identifying people who are suicidal on social media has become more crucial recently. Systems that predict people's mental health can be developed using the information offered by the textual data. In recent times, individuals have turned to social media platforms to share their experiences and seek mental health support. This trend has spurred researchers to utilize the data, applying various Natural Language Processing (NLP) and Machine Learning (ML) techniques to assist those in need. In this study, a framework to identify suicidal thoughts in social media using a combined Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) classifier model is proposed. Different combinations of embedding, activation functions, and solver algorithms are implemented on this network, and then the results are compared. The used methods contain Count and TF-IDF as word embedding, RReLU, Tanh, Mish, and ELU as activation functions, and Adam, Adamax, Adadelta, Adagrad, and RMSprop as solver algorithms. Bagging and stacking classifiers have been utilized on the network to create an ensemble of the basic models. In total, 82 different methods have been applied. The main dataset is gathered from four Reddit mental health datasets on suicidality. Overall, 59996 user texts from 2018 to 2020 were retrieved to be analyzed. Results are compared based on 5 performance metrics (accuracy, F1 score, precision, recall, and AUC) and elapsed times. The output accuracy scores are in the range of 74% - 86%. The combination of TF_IDF, RReLU, and Adam achieved the overall top performance. As a result, it is evident that real-world suicidality detection using ML is invaluable. ML algorithms can analyze social media posts, text messages, and behavioral patterns to provide insights and cautions. This approach can provide a proper platform so that suicidality and mental illness do not threaten the fabric of our society anymore.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Information Technologies
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Jazayeri, Kian
İlişkili Terim supervısor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Toplam Ödünçverme Yer Numarası Demirbaş Numarası Son Görülme Tarihi Kopya Bilgisi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Depo 23.10.2024 Bağış   YL 3516 A33 2024 T3963 23.10.2024 C.1 23.10.2024 Thesis Information Technologies
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Görsel İşitsel 23.10.2024 Bağış   YL 3516 A33 2024 CDT3963 23.10.2024 C.1 23.10.2024 Suppl. CD Information Technologies
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular