IDENTIFYING HARMFUL TWEETS: COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS / (Kayıt no. 293078)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 03086nam a22002657a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20250110130645.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 240927d2024 cy e|||| |||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 3559
Cutter no K35 2024
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Al-Kaladi, Bandar Khaled Mohammed
245 10 - ESER ADI BİLDİRİMİ
Başlık IDENTIFYING HARMFUL TWEETS: COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS /
Sorumluluk Bildirimi BANDAR KHALED MOHAMMED AL-KALADI ; SUPERVISOR, ASST. PROF. DR. KIAN JAZAYERI
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 46 sheets ;
Boyutları 30 cm
Birlikteki Materyal +1 CD ROM
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Information Technologies
520 ## - ÖZET NOTU
Özet notu Sentiment analysis on platforms along the lines of Twitter provides actual perception into public opinions and trends. This study evaluated the performance of one deep learning model, the Gated Recurrent Unit, and three machine learning algorithms, Support Vector Machine, Random Forest, and Naive Bayes, in differentiating between normal and harmful tweets. The dataset, sourced from Twitter, goes through preprocessing in order to remove noise, including user mentions, hashtags, links, and stop words. The cleaned dataset was split into training and testing sets in order to train each classifier. Performance metrics such as accuracy, precision, recall, F1-score, and confusion matrices were used in order to evaluate each model. An accuracy of 92.02% was accomplished by Naive Bayes, with normal tweets possessing a precision of 0.96 and recall of 0.88, and harmful tweets possessing a precision of 0.89 and recall of 0.96. Random Forest accomplished the highest accuracy at 97.28%, with normal tweets possessing a precision of 0.98 and recall of 0.97, and harmful tweets possessing a precision of 0.97 and recall of 0.98. Support Vector Machine (SVM) accomplished an accuracy of 96.92%, with normal tweets having a precision of 0.96 and recall of 0.98, and harmful tweets possessing a precision of 0.98 and recall of 0.96. The Gated Recurrent Unit (GRU) achieved an accuracy of 95.02%, with normal tweets having a precision of 0.98 and recall of 0.92, and harmful tweets possessing a precision of 0.92 and recall of 0.98. Each algorithm had advantages and disadvantages: Naive Bayes expressed high precision but lower recall for harmful tweets. Random Forest displayed balanced precision and recall. SVM achieved high accuracy with strong performance in both precision and recall. And GRU successfully handled sequential patterns. The findings highlight the relative advantages and limitations of deep learning and machine learning perspectives in Twitter sentiment analysis, with Random Forest and Support Vector Machine appearing as the majority of its effective among the evaluated methods.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Information Technologies
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Jazayeri, Kian
İlişkili Terim supervısor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Toplam Ödünçverme Yer Numarası Demirbaş Numarası Son Görülme Tarihi Kopya Bilgisi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Depo 19.11.2024 Bağış   YL 3559 K35 2024 T4006 19.11.2024 C.1 19.11.2024 Thesis Information Technologies
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Görsel İşitsel 19.11.2024 Bağış   YL 3559 K35 2024 CDT4006 19.11.2024 C.1 19.11.2024 Suppl. CD Information Technologies
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular