POTHOLE DETECTION AND REPORTING SYSTEM USING IMAGE PROCESSING / (Kayıt no. 293109)

MARC ayrıntıları
000 -BAŞLIK
Sabit Uzunluktaki Kontrol Alanı 02933nam a22002657a 4500
003 - KONTROL NUMARASI KİMLİĞİ
Kontrol Alanı KOHA
005 - EN SON İŞLEM TARİHİ ve ZAMANI
Kontrol Alanı 20250109100756.0
008 - SABİT UZUNLUKTAKİ VERİ ÖGELERİ - GENEL BİLGİ
Sabit Alan 240927d2024 cy d|||| |||| 00| 0 eng d
040 ## - KATALOGLAMA KAYNAĞI
Özgün Kataloglama Kurumu CY-NiCIU
Kataloglama Dili eng
Çeviri Kurumu CY-NiCIU
Açıklama Kuralları rda
041 ## - DİL KODU
Metin ya da ses kaydının dil kodu eng
090 ## - Yerel Tasnif No
tasnif no YL 3563
Cutter no A59 2024
100 1# - KİŞİ ADI
Yazar Adı (Kişi adı) Anyaegbuna, Ikenna Emmanuel
245 10 - ESER ADI BİLDİRİMİ
Başlık POTHOLE DETECTION AND REPORTING SYSTEM USING IMAGE PROCESSING /
Sorumluluk Bildirimi IKENNA EMMANUEL ANYAEGBUNA ; SUPERVISOR, ASSOC. PROF. DR. UMAR ÖZGÜNALP
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024
300 ## - FİZİKSEL TANIMLAMA
Sayfa, Cilt vb. 77 sheets ;
Boyutları 30 cm
Birlikteki Materyal +1 CD ROM
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
502 ## - TEZ NOTU
Tez Notu Thesis (MSc) - Cyprus International University. Institute of Graduate Studies and Research Electronics and Communication Engineering
520 ## - ÖZET NOTU
Özet notu Road damage detection is a pivotal aspect of infrastructure upkeep ensuring the safety and efficiency of transportation networks. Current methods often fall short in precisely categorizing distinct types of road surface irregularities and restricting maintenance strategies. This research aims to revolutionize road damage detection by leveraging cutting-edge computer vision techniques, specifically employing YOLOv8 models—YOLOv8n, YOLOv8s and YOLOv8m.<br/>Methodologies encompass the rigorous training and optimization of these models using a comprehensive dataset sourced from the "2020 IEEE International Conference on Big Data." The primary objective is to enable these systems to detect and categorize various types of road surface damages accurately. Performance evaluations and comparative analysis among the YOLOv8 variants form the core of the study to determine their applicability in practical scenarios.<br/>YOLOv8n demonstrated moderate performance with reasonable precision and recall rates albeit displaying relatively lower mAP50 and mAP50-95 scores across diverse damage classes. Conversely, YOLOv8s showcased amplified precision, recall and mAP scores signifying superior object detection capabilities compared to prior models. Nonetheless, YOLOv8m exhibited noteworthy advancements in precision and recall albeit at the cost of increased computational demands.<br/>In conclusion, while YOLOv8 models prove effective in detecting and categorizing road surface damages their suitability varies based on computational requirements. YOLOv8n is fitting for devices with limited computational resources, YOLOv8s improves accuracy for moderately capable devices and YOLOv8m, although accurate demands higher computational power. This study offers crucial insights for selecting appropriate YOLOv8 models tailored to diverse computational scenarios thereby contributing to advancements in road infrastructure maintenance and safety.
650 #0 - KONU BAŞLIĞI EK GİRİŞ - KONU TERİMİ
Konusal terim veya coğrafi ad Electronics and Communication Engineering
Alt başlık biçimi Dissertations, Academic
700 1# - EK GİRİŞ - KİŞİ ADI
Yazar Adı (Kişi adı) Özgünalp, Umar
İlişkili Terim supervisor
942 ## - EK GİRİŞ ÖGELERİ (KOHA)
Sınıflama Kaynağı Dewey Onlu Sınıflama Sistemi
Materyal Türü Thesis
Mevcut
Geri Çekilme Durumu Kayıp Durumu Sınıflandırma Kaynağı Kredi için değil Koleksiyon Kodu Kalıcı Konum Mevcut Konum Raf Yeri Kayıt Tarih Source of acquisition Toplam Ödünçverme Yer Numarası Demirbaş Numarası Son Görülme Tarihi Kopya Bilgisi Fatura Tarihi Materyal Türü Genel / Bağış Notu
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Depo 21.11.2024 Bağış   YL 3563 A59 2024 T4010 21.11.2024 C.1 21.11.2024 Thesis Electronics and Communication Engineering
    Dewey Onlu Sınıflama Sistemi   Tez Koleksiyonu CIU LIBRARY CIU LIBRARY Görsel İşitsel 21.11.2024 Bağış   YL 3563 A59 2024 CDT4010 21.11.2024 C.1 21.11.2024 Suppl. CD Electronics and Communication Engineering
Araştırmaya Başlarken  
  Sıkça Sorulan Sorular