000 | 05534na a2201009 4500 | ||
---|---|---|---|
001 | 64092 | ||
003 | koha_MIRAKIL | ||
005 | 20221103135316.0 | ||
008 | 140801b tu 000 0 | ||
040 |
_aCY-NiCIU _btur _cCY-NiCIU _erda |
||
041 | _aeng | ||
090 |
_aYL 295 _bO43 2012 |
||
100 | _aOladapo, Oladotun O. | ||
245 |
_aPerformance evaluation of long term evolution downlink-time division duplexing and frequency division duplexing _cOladotun O. Oladapo Supervisor:Devrim Seral |
||
260 |
_aNicosia _bCyprus International University _c2012 |
||
300 |
_aXII, 77 p. _bcol.pic., tab. _c31 cm |
||
336 |
_2rdacontent _atext _btxt |
||
337 |
_2rdamedia _aunmediated _bn |
||
338 |
_2rdacarrier _avolume _bnc |
||
504 | _aIncludes references. | ||
520 | _a'The Long Term Evolution (LTE) is the next step into the next generation mobile cellular communication with the main targets of increased data rates, reduced latency and increased spectral efficiency. LTE has proved itself to be more challenging than its other counterpart\'s technologies and it\'s often been referred to as the leap into a new generation technology - fourth Generation (4G). When compared to other existing 4G technologies like Worldwide Interoperability for Microwave Access (WiMAX), it has shown superiority in terms of high mobility, back-ward compatibility with older generations, and also it supports both paired and unpaired spectrum, these factors makes it a dominant network of choice amongst mobile operators today. Starting from this premise, it is vivid that all aspects of LTE topics are worth investigating for both the industrial and academic communities. This work evaluates the performance of the paired used for Frequency Division Duplex (FDD) and unpaired used for Time Division Duplex (TDD) spectrum in LTE in terms of mobility, an important factor to consider in mobile cellular networks. This is when a mobile user is moving while active; the user\'s velocity causes a doppler effect, a phase shift in the frequency of the signal transmitted along each signal path which leads to fading. This work characterizes users\' mobility speed based on real-life scenarios average 5 km/h for pedestrian, average 70 km/h for mobile users on vehicle speed and average of 300 km/h for mobile users on high speed train. It has compared the TDD and FDD performance in terms of bit error rate (BER) with respect to signal noise ratios (SNR), a fundamental parameter to access the quality of digital transmission, considering different modulation schemes across different fading channels. Keywords: LTE, 4G, WiMAX, FDD, TDD, SNR, BER' | ||
650 | _aPerformance evaluation of long term evolution downlink-time division duplexing and frequency division duplexing | ||
700 |
_aSupervisor: Seral,Devrim _91656 |
||
942 |
_2ddc _cTS |
||
505 | 1 |
_g1 _tCHAPTER 1 |
|
505 | 1 |
_g1 _tINTRODUCTION |
|
505 | 1 |
_g3 _tTargets and Requirements for LTE |
|
505 | 1 |
_g4 _tLTE Performance and Features |
|
505 | 1 |
_g5 _tLTE Basic Concepts |
|
505 | 1 |
_g6 _tProblems Statements |
|
505 | 1 |
_g6 _tAims of Thesıs |
|
505 | 1 |
_g7 _tThesis Organization |
|
505 | 1 |
_g8 _tOVERVIEW OF LONG TERM EVOLUTION |
|
505 | 1 |
_g10 _tLTE Network Architecture |
|
505 | 1 |
_g11 _tFunctional Description of LTE Network |
|
505 | 1 |
_g11 _tEvolved Universal Terrestial Access Network (E-UTRAN) |
|
505 | 1 |
_g12 _tEvolved Packet Core |
|
505 | 1 |
_g15 _tLTE Physical Layer |
|
505 | 1 |
_g16 _tOrthogonal Frequency Division Multiplexing(OFDM) |
|
505 | 1 |
_g18 _tCyclic Prefix |
|
505 | 1 |
_g18 _tFast Fourier Transform(FFT) |
|
505 | 1 |
_g19 _tOrthogonal Frequency Division Multiple Access(OFDMA) |
|
505 | 1 |
_g21 _tFrame Structure |
|
505 | 1 |
_g21 _tType-1 Frame Structure |
|
505 | 1 |
_g22 _tType-2 Frame Structure |
|
505 | 1 |
_g24 _tTDD-FDD Duplex Transmission Modes |
|
505 | 1 |
_g24 _tFDD |
|
505 | 1 |
_g24 _tTDD |
|
505 | 1 |
_g25 _tTDD/FDD Frequency bands |
|
505 | 1 |
_g27 _tTDD versus FDD |
|
505 | 1 |
_g27 _tPhysical Layer Downlink |
|
505 | 1 |
_g28 _tSlot Structure and Physical Resources Elements |
|
505 | 1 |
_g28 _tResources grid |
|
505 | 1 |
_g29 _tResource blocks |
|
505 | 1 |
_g31 _tModulation |
|
505 | 1 |
_g32 _tPhysical Channels |
|
505 | 1 |
_g34 _tDownlink Channel Processing |
|
505 | 1 |
_g37 _tPhysical Signal |
|
505 | 1 |
_g37 _tReferences Signal |
|
505 | 1 |
_g39 _tSynchronozition Signal |
|
505 | 1 |
_g40 _tDownload Multiple Antenna Transmission Modes |
|
505 | 1 |
_g42 _tDownlink Data Transmission |
|
505 | 1 |
_g42 _tDownlink Radio Procedure |
|
505 | 1 |
_g45 _tPROPAGATİON CHANNEL AND MODELS |
|
505 | 1 |
_g45 _tPropagation Channel |
|
505 | 1 |
_g47 _tStandard Channel Models |
|
505 | 1 |
_g47 _tSISO and SIMO Models |
|
505 | 1 |
_g48 _tITU Channel Model |
|
505 | 1 |
_g49 _tExtended ITU Channel Models |
|
505 | 1 |
_g50 _tMIMO Channel Models |
|
505 | 1 |
_g51 _tITU Models with Spatial Correlation |
|
505 | 1 |
_g52 _tSpatial Channel Model (SCM) |
|
505 | 1 |
_g54 _tWinner Channel Model |
|
505 | 1 |
_g54 _tSIMULATION MODEL |
|
505 | 1 |
_g54 _tSimulaion Model |
|
505 | 1 |
_g57 _tBi Error Rate |
|
505 | 1 |
_g58 _tSimulation Parameters |
|
505 | 1 |
_g59 _tRESULT AND DISCUSSIONS |
|
505 | 1 |
_g59 _tScenario 1 |
|
505 | 1 |
_g63 _tScenario 2 |
|
505 | 1 |
_g66 _tScenario 3 |
|
505 | 1 |
_g70 _tCONCLUSION AND FUTURE WORKS |
|
505 | 1 |
_g70 _tConclusion |
|
505 | 1 |
_g73 _tFuture Works |
|
505 | 1 |
_g74 _tREFERENCES |
|
999 |
_c333 _d333 |